API
LLMs
Endpoint
https://app.zohal.cloud/api/v1/llms
If you're looking for models, see LLMs part of this documentations. We have a handful of LLMs you can use.
Parameters
messages
: A list of JSON objects defining the role of your LLM and also your users prompts.max_tokens
: Maximum amount of tokens you can put in your prompts (consider we usually reserved around 30-40 tokens for our system prompts)temperature
: This parameter determines the creativity of the model.
cURL
curl --location --request POST 'https://app.zohal.cloud/api/v1/llms' \
--header 'Authorization: Bearer YOUR_API_KEY' \
--header 'Content-Type: application/json' \
--data-raw '{
"model" : "jabir-400b",
"messages": [
{
"role": "user",
"content": "Hi, who are you?"
}
],
"max_tokens": 1024,
"temperature": 0.9
}'
Python
import requests
import json
url = "https://app.zohal.cloud/api/v1/llms"
payload = json.dumps({
"model": "jabir-400b",
"messages": [
{
"role": "user",
"content": "Hi, who are you?"
}
],
"max_tokens": 1024,
"temperature": 0.9
})
headers = {
'Authorization': 'Bearer YOUR_API_KEY',
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
Sample output
{"model":"jabir-400b","result":{"role":"assistant","content":"I'm Jabir, an AI assistant created by Muhammadreza Haghiri, an Iranian entrepreneur and engineer who founded the Mann-E startup. I have been developed to help users like you by answering questions and providing information on a wide range of topics. How can I assist you today?"}}
Special LLMs
Endpoint
https://app.zohal.cloud/api/v1/special/llms
If you're looking for models, see LLMs part of this documentations. We have a handful of LLMs you can use.
Parameters
messages
: A list of JSON objects defining the role of your LLM and also your users prompts.max_tokens
: Maximum amount of tokens you can put in your prompts (consider we usually reserved around 30-40 tokens for our system prompts)temperature
: This parameter determines the creativity of the model.
cURL
curl --location --request POST 'https://app.zohal.cloud/api/v1/special/llms' \
--header 'Authorization: Bearer YOUR_API_KEY' \
--header 'Content-Type: application/json' \
--data-raw '{
"model" : "jabir-400b",
"messages": [
{
"role": "user",
"content": "Hi, who are you?"
}
],
"max_tokens": 1024,
"temperature": 0.9
}'
Python
import requests
import json
url = "https://app.zohal.cloud/api/v1/special/llms"
payload = json.dumps({
"model": "jabir-400b",
"messages": [
{
"role": "user",
"content": "Hi, who are you?"
}
],
"max_tokens": 1024,
"temperature": 0.9
})
headers = {
'Authorization': 'Bearer YOUR_API_KEY',
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
Sample output
{"model":"jabir-400b","result":{"role":"assistant","content":"I'm Jabir, an AI assistant created by Muhammadreza Haghiri, an Iranian entrepreneur and engineer who founded the Mann-E startup. I have been developed to help users like you by answering questions and providing information on a wide range of topics. How can I assist you today?"}}
Image models
Mann-E Dreams
Endpoint
https://app.zohal.cloud/api/v1/images/mann-e/dreams
Parameters
prompt
: What you want to makesize
: The pictures ratio. Available options are1:1
and9:16
and16:9
.style
: The style of your desired outputs. Available options arenostyle
,comic
,anime
,logo
,vector
,flat
andimpressionist
.
cURL
curl --location --request POST 'https://app.zohal.cloud/api/v1/images/mann-e/dreams' \
--header 'Authorization: Bearer YOUR_API_KEY' \
--header 'Content-Type: application/json' \
--data-raw '{
"prompt" : "A little rabbit",
"style" : "nostyle",
"size" : "1:1"
}'
Python
import requests
import json
url = "https://app.zohal.cloud/api/v1/images/mann-e/dreams"
payload = json.dumps({
"prompt": "A little rabbit",
"style": "nostyle",
"size": "1:1"
})
headers = {
'Authorization': 'Bearer YOUR_API_KEY',
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
Sample Output
{
"negative_prompt": "",
"prompt": "A little rabbit",
"revised_prompt": false,
"style": "nostyle",
"url": "https://mann-e-images.storage.c2.liara.space/6a777c2e-be06-462e-a46f-5800358b8ff2.png"
}
Mann-E Fast
Endpoint
https://app.zohal.cloud/api/v1/images/mann-e/fast
Parameters
prompt
: What you want to makesize
: The pictures ratio. Available options are1:1
and9:16
and16:9
.style
: The style of your desired outputs. Available options arenostyle
,comic
,anime
,logo
,vector
,flat
andimpressionist
.
cURL
curl --location --request POST 'https://app.zohal.cloud/api/v1/images/mann-e/fast' \
--header 'Authorization: Bearer YOUR_API_KEY' \
--header 'Content-Type: application/json' \
--data-raw '{
"prompt" : "a pineapple",
"size" : "9:16",
"style" : "anime"
}'
Python
import requests
import json
url = "https://app.zohal.cloud/api/v1/images/mann-e/fast"
payload = json.dumps({
"prompt": "a pineapple",
"size": "9:16",
"style": "anime"
})
headers = {
'Authorization': 'Bearer zc-9184nxcq0knnjdv566y4rz7qfrx8e72r8koeh1kng4mg0gps',
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
Sample Output
{"url":"https://mann-e-images.storage.c2.liara.space/0332249e-f0cb-43d4-a8a6-934520e7b3c9.png"}
Mann-E Quality/Anime
Description
This is a two part API. With one, you just create a task and with the other one, you're reviewing your task. If your task is finished, your images are ready.
Endpoints
- For creating the task:
https://app.zohal.cloud/api/v1/images/mann-e/quality
- For reviewing the task:
https://app.zohal.cloud/api/v1/images/mann-e/quality/review
Parameters
model
: has to options, one isquality
and the other isanime
prompt
: What you want to makesize
: The pictures ratio. Available options are1:1
and9:16
and16:9
, and every aspect raito you use on Midjourney can be applied here.style
: The style of your desired outputs. Available options arenostyle
,comic
,anime
,logo
,vector
,flat
andimpressionist
.
cURL
Task creation:
curl --location --request POST 'https://app.zohal.cloud/api/v1/images/mann-e/quality' \
--header 'Authorization: Bearer YOUR_API_KEY' \
--header 'Content-Type: application/json' \
--data-raw '{
"model" : "quality",
"size" : "3:2",
"prompt" : "a pineapple, watercolorpainting",
"style" : "nostyle"
}'
Task Review:
curl --location --request POST 'https://app.zohal.cloud/api/v1/images/mann-e/quality/review' \
--header 'Authorization: Bearer YOUR_API_KEY' \
--header 'Content-Type: application/json' \
--data-raw '{
"task_id" : "0df67a0a-b183-4e48-8977-ae880792afdb"
}'
Python
Task creation:
import requests
import json
url = "https://app.zohal.cloud/api/v1/images/mann-e/quality"
payload = json.dumps({
"model": "quality",
"size": "3:2",
"prompt": "a pineapple, watercolorpainting",
"style": "nostyle"
})
headers = {
'Authorization': 'Bearer YOUR_API_KEY',
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
Task Review:
import requests
import json
url = "https://app.zohal.cloud/api/v1/images/mann-e/quality/review"
payload = json.dumps({
"task_id": "0df67a0a-b183-4e48-8977-ae880792afdb"
})
headers = {
'Authorization': 'Bearer YOUR_API_KEY',
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
Sample Output
Task creation:
{"task_id":"0df67a0a-b183-4e48-8977-ae880792afdb"}
Task review (unfinished):
{"status":"processing"}
Statuses: failed
, pending
, staged
, processing
Task review (finished):
{"urls":["https://mann-e-images.storage.c2.liara.space/6209b321-f436-4bfc-9035-12f22fd121ca_part_0000.png","https://mann-e-images.storage.c2.liara.space/6209b321-f436-4bfc-9035-12f22fd121ca_part_0001.png","https://mann-e-images.storage.c2.liara.space/6209b321-f436-4bfc-9035-12f22fd121ca_part_0002.png","https://mann-e-images.storage.c2.liara.space/6209b321-f436-4bfc-9035-12f22fd121ca_part_0003.png"]}